

PREMUS® VHM-HOCHLEISTUNGSFRÄSER ALLROUND

2022

VHM-Hochleistungsfräser Allround

Unsere Allround-Werkzeuglösung

- ungleich gedrallt (35°/38°) für hohe Laufruhe
- ungleich geteilt zur Minimierung von Vibrationen
- sehr hohes Zeitspanvolumen
- geeignet zum Schruppen bis Schlichten
- ▶ 45° Schutzfase für bessere Standzeiten 45°
- AlCrN-Beschichtung für höhere Leistung
- ▶ die richtige Lösung für unterschiedlichste Bearbeitungsanforderungen

Schaftfräser VHM Allround, mit freigeschliffenem Schaft

Ausführung:

- ungleich geteilt und gedralltlange Ausführung
- freigeschliffener Schaft
- 45° Schutzfase an der Schneide
- AICrN beschichtet

Verwendung:

- universell einsetzbar
- Schruppen bis Schlichten
- sehr hohes Zeitspanvolumen
- hohe Laufruhe



ArtNr.	175448 lang, Fase Alcrona (RG 1730)	Al mm	A5 mm	B2 mm	B3 mm	B5 mm	C3 mm	G2 mm	fz mm/Zahn	ArtNr.	175448 lang, Fase Alcrona (RG 1730)	A1 mm	A5 mm	B2 mm	B3 mm	B5 mm	C3 mm	G2 mm	fz mm/Zahn
3,00	16,85	3	2,80	8	18	57	6	0,13	0,007 - 0,040	10,00	33,10	10	9,50	22	32	72	10	0,30	0,040 - 0,110
4,00	16,85	4	3,80	11	21	57	6	0,18	0,010 - 0,050	12,00	46,35	12	11,50	26	38	83	12	0,30	0,060 - 0,140
5,00	16,85	5	4,80	13	21	57	6	0,20	0,015 - 0,055	16,00	73,25	16	15,50	32	44	92	16	0,40	0,090 - 0,200
6,00	16,85	6	5,50	13	21	57	6	0,20	0,025 - 0,060	20,00	129,80	20	19,50	38	54	104	20	0,50	0,130 - 0,260
8,00	23,15	8	7,50	19	27	63	8	0,20	0,030 - 0,080										

Schnittdaten


Empfehlung:

Vorschübe in vorvergüteten Materialien und rostfreien Stählen um 25 % reduzieren.

Hinweis:

Schnittdaten beziehen sich auf Nassbearbeitung.

In Abhängigkeit der Bearbeitungsbedingungen und Materialschwankungen sind evtl. angepasste Schnittwerte zu wählen.

	Zahnvorschub fz [mm/Z]										
Ø mm	$ap = 1 \times A1$ $ae \le 0, 1 \times A1$ $\beta \le 36, 9^{\circ}$	$\begin{array}{c} ap = 1 \times A1 \\ ae \leq 0,25 \times A1 \\ \beta \leq 60^{o} \end{array}$	$ap = 1 \times A1$ $ae \le 0.4 \times A1$ $\beta \le 78.5^{\circ}$	$ap = 1 \times A1$ $ae \le 1,0 \times A1$ $\beta \le 180^{\circ}$							
3	0,040	0,028	0,012	0,007							
4	0,050	0,035	0,020	0,010							
5	0,055	0,035	0,025	0,015							
6	0,060	0,040	0,030	0,025							
8	0,080	0,050	0,040	0,030							
10	0,110	0,070	0,050	0,040							
12	0,140	0,090	0,070	0,060							
16	0,200	0,130	0,110	0,090							
20	0,260	0,170	0,150	0,130							

 β = Umschlingungswinkel

ISO	Werks	stoff	Zugfestigkeit N/mm²	Rampen/ Helix	Schnittgeschwindigkeit Vc [m/min]						
	allgemeine Baustä	iblo	≤ 500	≤ 3°	320	280	230	180			
	angemente bausta	iiile	≤ 1000	≤ 2°	200	160	150	110			
	Automatenstähle		≤ 850	≤ 3°	320	280	230	180			
	Automatenstanie		≤ 1000	≤ 2°	200	160	150	110			
			≤ 700	≤ 3°	320	280	230	180			
	unlegierte Vergütu	ıngsstähle	≤ 850	≤ 3°	320	280	230	180			
			≤ 1000	≤ 2°	200	160	150	110			
	unlegierte Einsatz	stähle	≤ 850	≤ 3°	320	280	230	180			
	legierte Vergütung	reetählo	≤ 1000	≤ 2°	200	160	150	110			
P	legierte vergutung	jsstarile	≤ 1400	≤ 2°	180	150	140	100			
	legierte Einsatzstä	iblo	≤ 1000	≤ 2°	200	160	150	110			
	legierte Emsatzsta	ine	≤ 1400	≤ 2°	180	150	140	100			
	Nitrierstähle		≤ 1000	≤ 2°	200	160	150	110			
	Witherstaine		≤ 1400	≤ 2°	180	150	140	100			
	Werkzeugstähle		≤ 850	≤ 3°	200	160	150	110			
	werkzeugstanie		≤ 1400	≤ 2°	140	110	100	70			
	Warmarbeitsstähle	2	≤ 1000	≤ 1,5°	125	110	105	80			
	Schnellarbeitsstäl	nle	≤ 1400	≤ 1,5°	110	90	80	60			
	Federstähle		≤ 1500	≤ 1,5°	150	130	120	90			
		- geschwefelt	≤ 900	≤ 1,5°	120	100	80	Nicht empfohlen			
M	rostfreie Stähle	- austenitisch	≤ 1100	≤ 1,5°	110	90	70	für Vollspur in			
		- martensitisch	≤ 1500	≤ 1,5°	85	70	50	rostfreiem Stahl.			
H	gehärtete Stähle		≤ 48 HRC	≤ 1,0°	85	70	60	50			
	Gusseisen		≤ 240 HB	≤ 3°	240	200	160	130			
	uusseiseii		≤ 350 HB	≤ 2°	185	170	150	120			
K	Kugelgraphit- und	Tomporques	≤ 240 HB	≤ 3°	240	200	160	130			
	Kugeigiapilit- ullu	iemperguss	≤ 350 HB	≤ 2°	185	170	150	120			
	Hartguss		≤ 350 HB	≤ 2°	170	160	140	110			

Die angegebenen Schnittwerte sind Richtwerte. Die für den jeweiligen Bearbeitungsfall optimalen Daten sollten im Versuch oder während der Bearbeitung ermittelt werden.

Alle Preise in Euro pro Stück, zzgl. MwSt. Nachdruck und Vervielfältigungen jeglicher Art, auch auszugsweise, sind nur mit schriftlicher Genehmigung der Fa. PRECITOOL Werkzeughandel GmbH & Co. KG, Zentrallager, 36286 Neuenstein, gestattet. Für Druckfehler übernehmen wir keine Haftung.

HENKA Werkzeuge + Werkzeugmaschinen GmbH Zwickauer Straße 30b, 09366 Stollberg Telefon: 037296 - 5415 0 info@henka.de, www.henka.de

IMPRESSUM
Herausgeber und Konzept:
PRECITOOL Werkzeughandel
GmbH & Co. KG Zentrallager
Lingenfeld 1 | 36286 Neuenstein
Telefon: 06677 9229-0
E-Mail: info@precitool.de
Webseite: www.precitool.de
Erscheinungsjahr: 2022

Gültig ab 01.09.2022